
Lecture 3 : 
Gate-Level Minimization
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Outline

four-variable Karnaugh Map

NAND and NOR Implementations

Other Two-Level Implementations

Exclusive-OR Function

2



Four-Variable Maps

 Top cells are adjacent to bottom cells. Left-
edge cells are adjacent to right-edge cells.

 Note variable ordering (WXYZ).
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Example
 Simplify the following Boolean function 

(A,B,C,D) = ∑m(0,1,2,4,5,7,8,9,10,12,13).

 First put the function g( ) into the map, and 
then group as many 1s as possible.
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EXAMPLE 3.5
Simplify the Boolean function
F (w, x, y, z) =Σ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

F = y’ + w’z’ + xz’
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EXAMPLE 3.6
Simplify the Boolean function

F = B’D’ + B’C’ + A’CD’



Example

 Simplify the function f(a,b,c,d) 
whose K-map is shown at the right.

 f = a’c’d+ab’+cd’+a’bc’ 

or

 f = a’c’d+ab’+cd’+a’bd’

 The middle two terms are EPIs, while 
the first and last terms are selected 
to
cover the minterms m1, m4, and m5.

 (There’s a third solution!)
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EXAMPLE 3.7
Simplify the following Boolean function into (a) sum-of-
products form and (b) product-of-sums form:
F (A, B, C, D) =Σ(0, 1, 2, 5, 8, 9, 10)
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Two Gate Implementations
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 Sometimes product-of-sums representations 
may have smaller implementations



Don’t Care Conditions

Chapter 3          16

 X = don’t care (can be 0 or 1)

 Don’t cares can be included to form a larger cube, 
but not necessary to be completely covered

 Ex: F(w, x, y, z) =Σ(1,3,7,11,15) d(w, x, y, z) =Σ(0,2,5)



NAND and NOR Implementation
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 Digital circuits are frequently constructed with NAND or 
NOR gates rather than with AND and OR gate

 NAND and NOR gates are much easier to fabricate

 NAND or NOR gates are both universal gates

 Any digital system can be implemented with only 
NAND gates or NOR gates



Alternative Graphic Symbols
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 To facilitate the conversion to NAND or NOR logic, it is 
convenient to define alternative graphic symbols

 “Bubble” means complement



Two-Level Implementation (NAND)

 It’s easy to implement a Boolean function with 
only NAND gates if converted from a sum of 
products form

 Ex: F = AB+CD = ((AB)‘(CD)‘)‘
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EXAMPLE 3.9
Implement the following Boolean function with NAND gates:
F (x, y, z) = Σ(1, 2, 3, 4, 5, 7)

Procedures:

1. Simplify the function in sum of 
products

2. Draw NAND gates for the first 
level

3. Draw a single AND-invert or 
invert-OR in the second level

4. Add an inverter at the first 
level for the term with a 
single literal
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Two-Level Implementation (NOR)

 It’s easy to implement a Boolean function with 
only NOR gates if converted from a product of 
sums form

 Ex: F=(A+B)(C+D)E
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Multilevel NAND Circuits

 Procedures:

1. Convert all AND gates to 
NAND gates with AND-
invert symbols

2. Convert all OR gates to 
NAND gates with invert-
OR symbols

3. Check all bubbles and 
insert an inverter for the 
bubble that are not 
compensated by another 
bubble
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Implementing F = (AB‘ + A‘B) (C + D‘)



Exclusive-OR (XOR) Function

 XOR is often denoted by the symbol ⊕

 Logic operation of XOR

 X ⊕ Y = XY’ + X’Y

 Equal to 1 if only x is equal to 1 or if only y is equal 
to 1, but not when both are equal to 1

 It’s complement, exclusive-NOR (XNOR), is often 
denoted by the symbol ⊙

 Logic operation

 X ⊙ Y = XY + X’Y’

 It is equal to 1 if both x and y are equal to 1 or if both 
are equal to 0

 Seldom used in general Boolean functions

 Particularly useful in arithmetic operations and error 
detection and correction circuits
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Exclusive-OR Implementations
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Odd Function

 The multiple-variable XOR 
operation is defined as an 
odd function

 TRUE when no. of “1” in 
inputs is odd
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Even Function

 The multiple-variable XNOR 
operation is defined as an 
even function

 TRUE when no. of “1” in inputs 
is even
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Parity Generation and Checking

 An extra parity bit is often added and checked 
at the receiving end for error

 The circuit that generates the parity bit in the 
transmitter is called a parity generator

 The circuit that checks the parity in the receiver is 
called a parity checker

 Exclusive-OR functions are very useful to 
construct such circuits
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Parity Generator

 For even parity:

 The total number of “1” 
(including P) is even

 The number of “1” at inputs 
is odd

 Generated with an XOR  
gate (odd function)

 P = x ⊕ y ⊕ z (for 3-bit 
message)

 Similarly, odd parity can be 
generated with an XNOR 
gate
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P = x ⊕ y ⊕ z



Parity Checker

 For even parity, the total 
number of “1” in the message 
is even

 An error occurs when the 
received number of “1” is odd

 An XOR gate (odd function) 
can detect such an error

 Has n+1 inputs
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