
Lecture 3 :
Gate-Level Minimization

1

Outline

four-variable Karnaugh Map

NAND and NOR Implementations

Other Two-Level Implementations

Exclusive-OR Function

2

Four-Variable Maps

 Top cells are adjacent to bottom cells. Left-
edge cells are adjacent to right-edge cells.

 Note variable ordering (WXYZ).

m10m11m9m810

m14m15m13m1211

m6m7m5m401

m2m3m1m000

10110100WX

YZ

Example
 Simplify the following Boolean function

(A,B,C,D) = ∑m(0,1,2,4,5,7,8,9,10,12,13).

 First put the function g() into the map, and
then group as many 1s as possible.

cd
ab

111

11

111

111

g(A,B,C,D) = c’+b’d’+a’bd

111

11

111

111

Chapter 3 6

EXAMPLE 3.5
Simplify the Boolean function
F (w, x, y, z) =Σ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

F = y’ + w’z’ + xz’

Chapter 3 7

EXAMPLE 3.6
Simplify the Boolean function

F = B’D’ + B’C’ + A’CD’

Example

 Simplify the function f(a,b,c,d)
whose K-map is shown at the right.

 f = a’c’d+ab’+cd’+a’bc’

or

 f = a’c’d+ab’+cd’+a’bd’

 The middle two terms are EPIs, while
the first and last terms are selected
to
cover the minterms m1, m4, and m5.

 (There’s a third solution!)

xx11

xx00

1011

1010

xx11

xx00

1011

1010

0 1 0 1

1 1 0 1

0 0 x x

1 1 x x

ab
cd

00

01

11

10

00 01 11 10

EXAMPLE 3.7
Simplify the following Boolean function into (a) sum-of-
products form and (b) product-of-sums form:
F (A, B, C, D) =Σ(0, 1, 2, 5, 8, 9, 10)

Chapter 3 14

Two Gate Implementations

Chapter 3 15

 Sometimes product-of-sums representations
may have smaller implementations

Don’t Care Conditions

Chapter 3 16

 X = don’t care (can be 0 or 1)

 Don’t cares can be included to form a larger cube,
but not necessary to be completely covered

 Ex: F(w, x, y, z) =Σ(1,3,7,11,15) d(w, x, y, z) =Σ(0,2,5)

NAND and NOR Implementation

Chapter 3 17

 Digital circuits are frequently constructed with NAND or
NOR gates rather than with AND and OR gate

 NAND and NOR gates are much easier to fabricate

 NAND or NOR gates are both universal gates

 Any digital system can be implemented with only
NAND gates or NOR gates

Alternative Graphic Symbols

Chapter 3 18

 To facilitate the conversion to NAND or NOR logic, it is
convenient to define alternative graphic symbols

 “Bubble” means complement

Two-Level Implementation (NAND)

 It’s easy to implement a Boolean function with
only NAND gates if converted from a sum of
products form

 Ex: F = AB+CD = ((AB)‘(CD)‘)‘

19

EXAMPLE 3.9
Implement the following Boolean function with NAND gates:
F (x, y, z) = Σ(1, 2, 3, 4, 5, 7)

Procedures:

1. Simplify the function in sum of
products

2. Draw NAND gates for the first
level

3. Draw a single AND-invert or
invert-OR in the second level

4. Add an inverter at the first
level for the term with a
single literal

20

Two-Level Implementation (NOR)

 It’s easy to implement a Boolean function with
only NOR gates if converted from a product of
sums form

 Ex: F=(A+B)(C+D)E

21

Multilevel NAND Circuits

 Procedures:

1. Convert all AND gates to
NAND gates with AND-
invert symbols

2. Convert all OR gates to
NAND gates with invert-
OR symbols

3. Check all bubbles and
insert an inverter for the
bubble that are not
compensated by another
bubble

22

Implementing F = (AB‘ + A‘B) (C + D‘)

Exclusive-OR (XOR) Function

 XOR is often denoted by the symbol ⊕

 Logic operation of XOR

 X ⊕ Y = XY’ + X’Y

 Equal to 1 if only x is equal to 1 or if only y is equal
to 1, but not when both are equal to 1

 It’s complement, exclusive-NOR (XNOR), is often
denoted by the symbol ⊙

 Logic operation

 X ⊙ Y = XY + X’Y’

 It is equal to 1 if both x and y are equal to 1 or if both
are equal to 0

 Seldom used in general Boolean functions

 Particularly useful in arithmetic operations and error
detection and correction circuits

23

Exclusive-OR Implementations

24

Odd Function

 The multiple-variable XOR
operation is defined as an
odd function

 TRUE when no. of “1” in
inputs is odd

25

Even Function

 The multiple-variable XNOR
operation is defined as an
even function

 TRUE when no. of “1” in inputs
is even

26

Parity Generation and Checking

 An extra parity bit is often added and checked
at the receiving end for error

 The circuit that generates the parity bit in the
transmitter is called a parity generator

 The circuit that checks the parity in the receiver is
called a parity checker

 Exclusive-OR functions are very useful to
construct such circuits

27

Parity Generator

 For even parity:

 The total number of “1”
(including P) is even

 The number of “1” at inputs
is odd

 Generated with an XOR
gate (odd function)

 P = x ⊕ y ⊕ z (for 3-bit
message)

 Similarly, odd parity can be
generated with an XNOR
gate

28

P = x ⊕ y ⊕ z

Parity Checker

 For even parity, the total
number of “1” in the message
is even

 An error occurs when the
received number of “1” is odd

 An XOR gate (odd function)
can detect such an error

 Has n+1 inputs

29

