Lecture 3 : Gate-Level Minimization

Outline

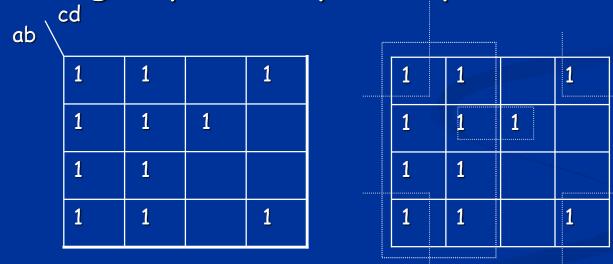
four-variable Karnaugh Map
NAND and NOR Implementations
Other Two-Level Implementations
Exclusive-OR Function

Four-Variable Maps YΖ 00 01 10 11 WX mo m_1 00 m₃ m_2 ΧZ m_6 01 m_4 m_7 m_5 m₁₂ m_{15} 11 m_{14} m_{13} m_{11} 10 m_8 m_9 m_{10}

- Top cells are adjacent to bottom cells. Leftedge cells are adjacent to right-edge cells.
- Note variable ordering (WXYZ).

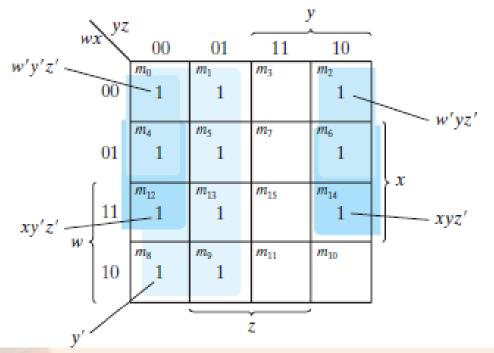
Simplify the following Boolean function $(A,B,C,D) = \sum m(0,1,2,4,5,7,8,9,10,12,13).$

First put the function g() into the map, and then group as many 1s as possible.



q(A,B,C,D) = c'+b'd'+a'bd

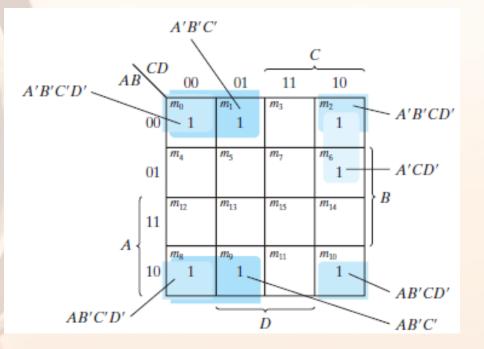
EXAMPLE 3.5 Simplify the Boolean function $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$



F = y' + w'z' + xz'

EXAMPLE 3.6 Simplify the Boolean function

F = A'B'C' + B'CD' + A'BCD' + AB'C'



F = B'D' + B'C' + A'CD'

Example

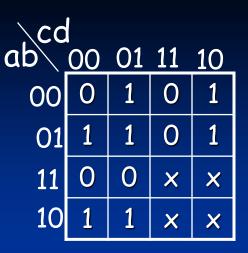
- Simplify the function f(a,b,c,d) whose K-map is shown at the right.
- f = a'c'd+ab'+cd'+a'bc'

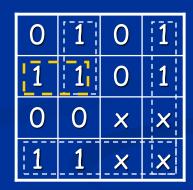
or

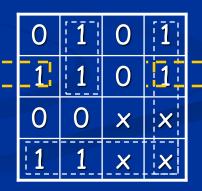
- f = a'c'd+ab'+cd'+a'bd'
- The middle two terms are EPIs, while the first and last terms are selected to

cover the minterms m_1 , m_4 , and m_5 .

(There's a third solution!)

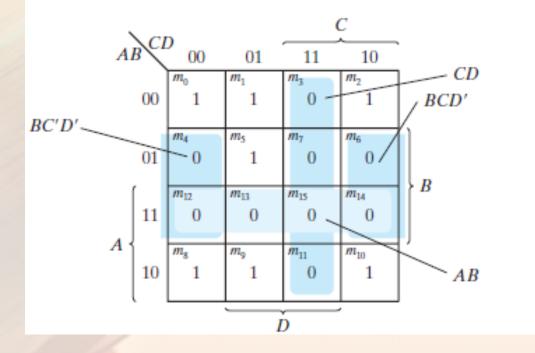






EXAMPLE 3.7

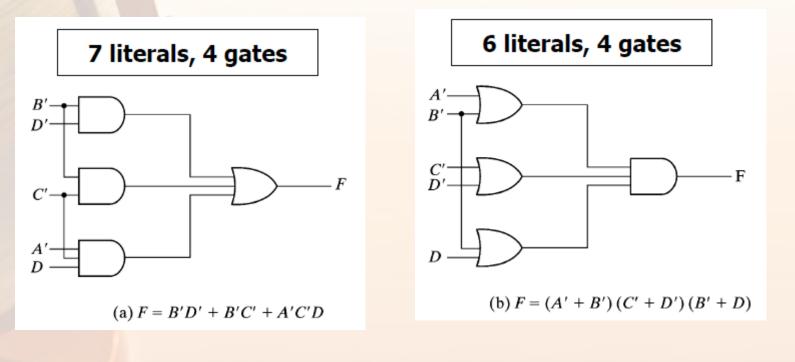
Simplify the following Boolean function into (a) sum-ofproducts form and (b) product-of-sums form: $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$



(b) F = (A' + B')(C' + D')(B' + D)

Two Gate Implementations

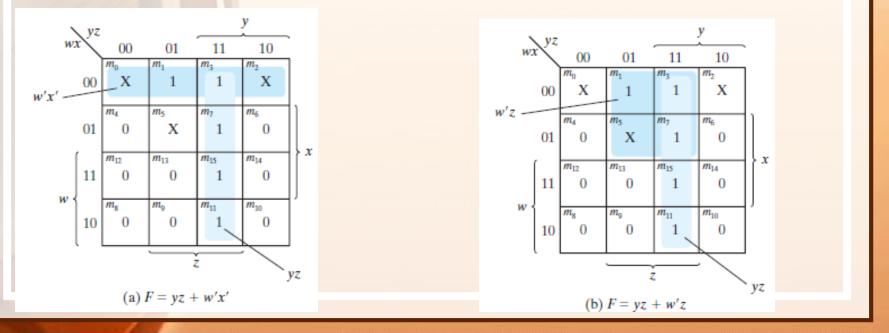
Sometimes product-of-sums representations may have smaller implementations



Don't Care Conditions

- $\Box X = don't$ care (can be 0 or 1)
- Don't cares can be included to form a larger cube, but not necessary to be completely covered

 $\Box \text{ Ex: } F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15) \ d(w, x, y, z) = \Sigma(0, 2, 5)$



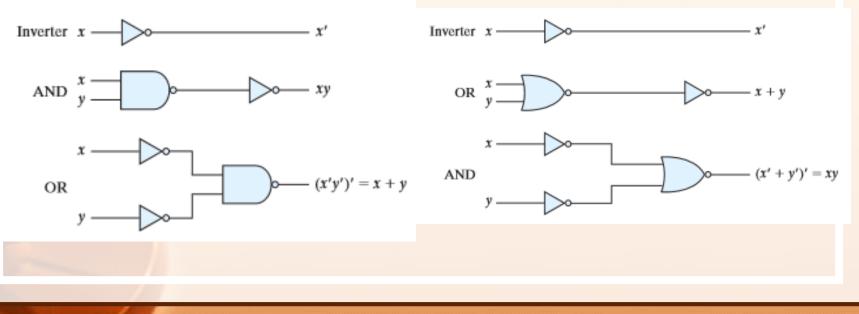
NAND and NOR Implementation

Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and OR gate

□ NAND and NOR gates are much easier to fabricate

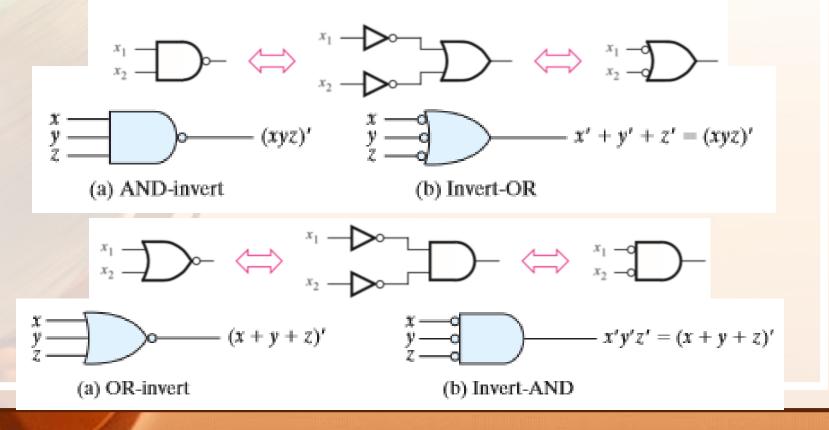
□ NAND or NOR gates are both universal gates

Any digital system can be implemented with only NAND gates or NOR gates



Alternative Graphic Symbols

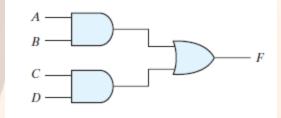
 To facilitate the conversion to NAND or NOR logic, it is convenient to define alternative graphic symbols
 "Bubble" means complement

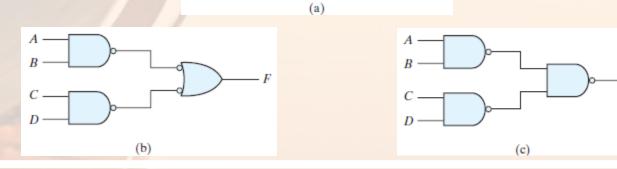


Two-Level Implementation (NAND)

It's easy to implement a Boolean function with only NAND gates if converted from a sum of products form

 $\Box \text{ Ex: } F = AB + CD = ((AB)'(CD)')'$



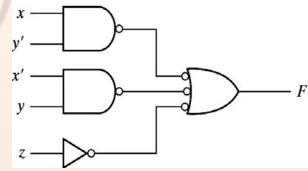


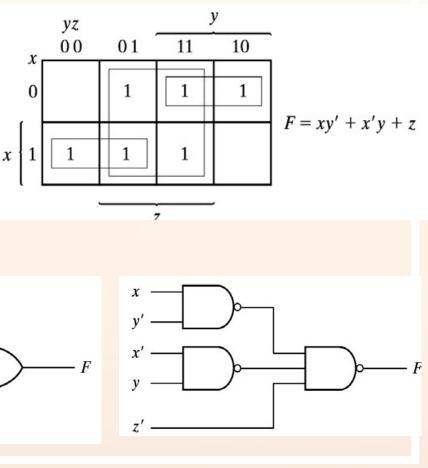
EXAMPLE 3.9

Implement the following Boolean function with NAND gates: $F(x, y, z) = \Sigma(1, 2, 3, 4, 5, 7)$

Procedures:

- 1. Simplify the function in sum of products
- 2. Draw NAND gates for the first level
- 3. Draw a single AND-invert or invert-OR in the second level
- 4. Add an inverter at the first level for the term with a single literal

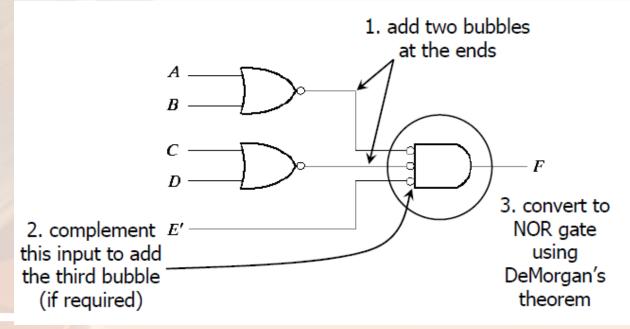




Two-Level Implementation (NOR)

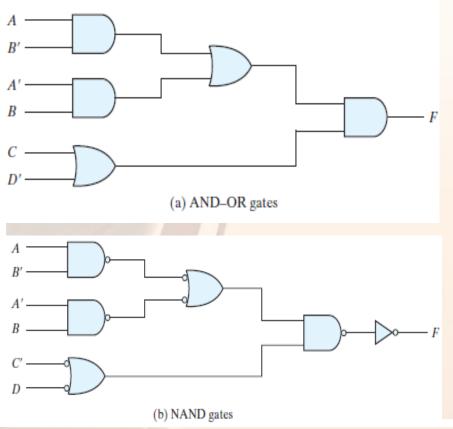
It's easy to implement a Boolean function with only NOR gates if converted from a product of sums form

 $\Box Ex: F = (A+B)(C+D)E$



Multilevel NAND Circuits

Implementing F = (AB' + A'B) (C + D')



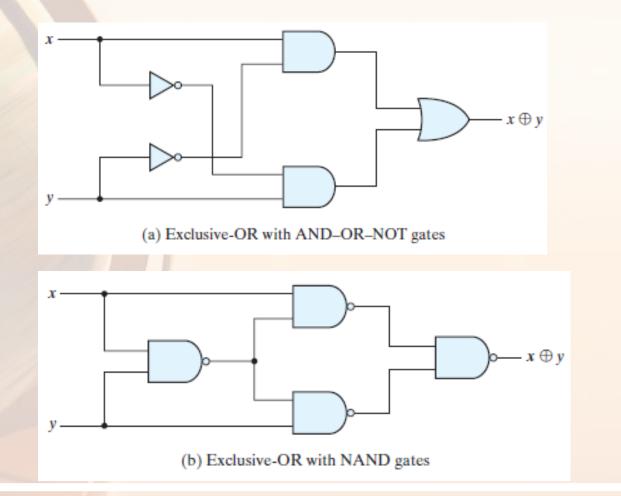
□ Procedures:

- 1. Convert all AND gates to NAND gates with ANDinvert symbols
- 2. Convert all OR gates to NAND gates with invert-OR symbols
- 3. Check all bubbles and insert an inverter for the bubble that are not compensated by another bubble

Exclusive-OR (XOR) Function

- \square XOR is often denoted by the symbol \oplus
- Logic operation of XOR
 - $\Box X \oplus Y = XY' + X'Y$
 - Equal to 1 if only x is equal to 1 or if only y is equal to 1, but not when both are equal to 1
- □ It's complement, exclusive-NOR (XNOR), is often denoted by the symbol ⊙
- Logic operation
 - $\Box X \odot Y = XY + X'Y'$
 - It is equal to 1 if both x and y are equal to 1 or if both are equal to 0
- Seldom used in general Boolean functions
 - Particularly useful in arithmetic operations and error detection and correction circuits

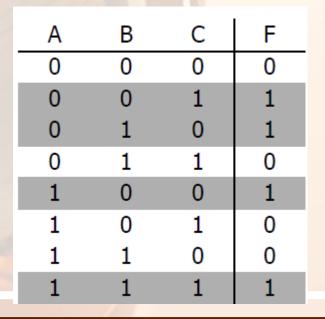
Exclusive-OR Implementations

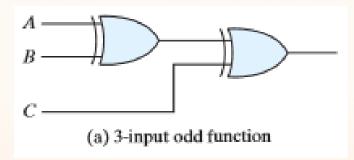


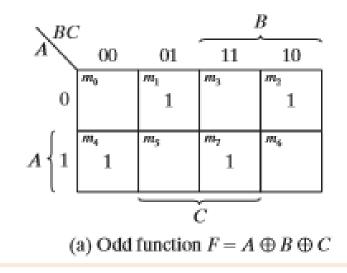
Odd Function

The multiple-variable XOR operation is defined as an odd function

TRUE when no. of "1" in inputs is odd



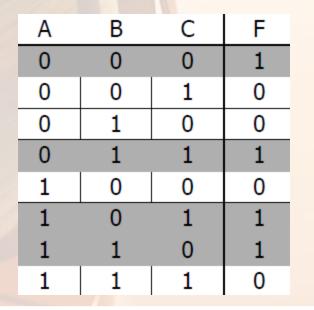


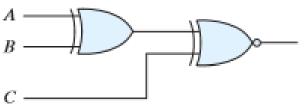


Even Function

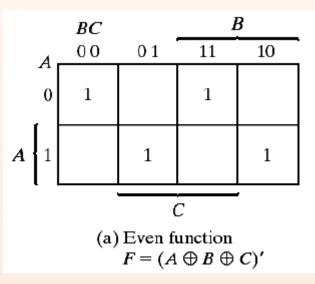
The multiple-variable XNOR operation is defined as an even function

TRUE when no. of "1" in inputs is even





(b) 3-input even function



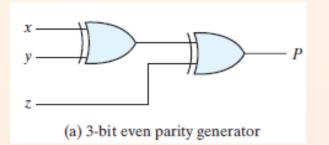
Parity Generation and Checking

- An extra parity bit is often added and checked at the receiving end for error
- The circuit that generates the parity bit in the transmitter is called a parity generator
- The circuit that checks the parity in the receiver is called a parity checker
- Exclusive-OR functions are very useful to construct such circuits

Parity Generator

- **For even** parity:
- The total number of "1" (including P) is even
- The number of "1" at inputs is odd
- Generated with an XOR gate (odd function)
- $\square P = x \oplus y \oplus z \text{ (for 3-bit message)}$
- Similarly, odd parity can be generated with an XNOR gate

Three-Bit Message			Parity Bit
x	y	z	Р
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

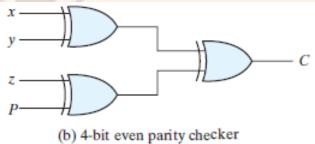


 $P = x \bigoplus y \bigoplus z$

Parity Checker

Table 3.4Even-Parity-Checker Truth Table

For even parity, the total number of "1" in the message is even
An error occurs when the received number of "1" is odd
An XOR gate (odd function)
can detect such an error
Has n+1 inputs



Four Bits Received				Parity Error Check
x	y	z	Р	с
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

 $C = x \oplus y \oplus z \oplus P$