
Lecture 3 : 
Gate-Level Minimization

1



Outline

four-variable Karnaugh Map

NAND and NOR Implementations

Other Two-Level Implementations

Exclusive-OR Function
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Four-Variable Maps

 Top cells are adjacent to bottom cells. Left-
edge cells are adjacent to right-edge cells.

 Note variable ordering (WXYZ).
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Example
 Simplify the following Boolean function 

(A,B,C,D) = ∑m(0,1,2,4,5,7,8,9,10,12,13).

 First put the function g( ) into the map, and 
then group as many 1s as possible.
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EXAMPLE 3.5
Simplify the Boolean function
F (w, x, y, z) =Σ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

F = y’ + w’z’ + xz’
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EXAMPLE 3.6
Simplify the Boolean function

F = B’D’ + B’C’ + A’CD’



Example

 Simplify the function f(a,b,c,d) 
whose K-map is shown at the right.

 f = a’c’d+ab’+cd’+a’bc’ 

or

 f = a’c’d+ab’+cd’+a’bd’

 The middle two terms are EPIs, while 
the first and last terms are selected 
to
cover the minterms m1, m4, and m5.

 (There’s a third solution!)
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EXAMPLE 3.7
Simplify the following Boolean function into (a) sum-of-
products form and (b) product-of-sums form:
F (A, B, C, D) =Σ(0, 1, 2, 5, 8, 9, 10)
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Two Gate Implementations

Chapter 3          15

 Sometimes product-of-sums representations 
may have smaller implementations



Don’t Care Conditions
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 X = don’t care (can be 0 or 1)

 Don’t cares can be included to form a larger cube, 
but not necessary to be completely covered

 Ex: F(w, x, y, z) =Σ(1,3,7,11,15) d(w, x, y, z) =Σ(0,2,5)



NAND and NOR Implementation
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 Digital circuits are frequently constructed with NAND or 
NOR gates rather than with AND and OR gate

 NAND and NOR gates are much easier to fabricate

 NAND or NOR gates are both universal gates

 Any digital system can be implemented with only 
NAND gates or NOR gates



Alternative Graphic Symbols
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 To facilitate the conversion to NAND or NOR logic, it is 
convenient to define alternative graphic symbols

 “Bubble” means complement



Two-Level Implementation (NAND)

 It’s easy to implement a Boolean function with 
only NAND gates if converted from a sum of 
products form

 Ex: F = AB+CD = ((AB)‘(CD)‘)‘
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EXAMPLE 3.9
Implement the following Boolean function with NAND gates:
F (x, y, z) = Σ(1, 2, 3, 4, 5, 7)

Procedures:

1. Simplify the function in sum of 
products

2. Draw NAND gates for the first 
level

3. Draw a single AND-invert or 
invert-OR in the second level

4. Add an inverter at the first 
level for the term with a 
single literal
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Two-Level Implementation (NOR)

 It’s easy to implement a Boolean function with 
only NOR gates if converted from a product of 
sums form

 Ex: F=(A+B)(C+D)E
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Multilevel NAND Circuits

 Procedures:

1. Convert all AND gates to 
NAND gates with AND-
invert symbols

2. Convert all OR gates to 
NAND gates with invert-
OR symbols

3. Check all bubbles and 
insert an inverter for the 
bubble that are not 
compensated by another 
bubble
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Implementing F = (AB‘ + A‘B) (C + D‘)



Exclusive-OR (XOR) Function

 XOR is often denoted by the symbol ⊕

 Logic operation of XOR

 X ⊕ Y = XY’ + X’Y

 Equal to 1 if only x is equal to 1 or if only y is equal 
to 1, but not when both are equal to 1

 It’s complement, exclusive-NOR (XNOR), is often 
denoted by the symbol ⊙

 Logic operation

 X ⊙ Y = XY + X’Y’

 It is equal to 1 if both x and y are equal to 1 or if both 
are equal to 0

 Seldom used in general Boolean functions

 Particularly useful in arithmetic operations and error 
detection and correction circuits
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Exclusive-OR Implementations
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Odd Function

 The multiple-variable XOR 
operation is defined as an 
odd function

 TRUE when no. of “1” in 
inputs is odd
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Even Function

 The multiple-variable XNOR 
operation is defined as an 
even function

 TRUE when no. of “1” in inputs 
is even
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Parity Generation and Checking

 An extra parity bit is often added and checked 
at the receiving end for error

 The circuit that generates the parity bit in the 
transmitter is called a parity generator

 The circuit that checks the parity in the receiver is 
called a parity checker

 Exclusive-OR functions are very useful to 
construct such circuits
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Parity Generator

 For even parity:

 The total number of “1” 
(including P) is even

 The number of “1” at inputs 
is odd

 Generated with an XOR  
gate (odd function)

 P = x ⊕ y ⊕ z (for 3-bit 
message)

 Similarly, odd parity can be 
generated with an XNOR 
gate
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P = x ⊕ y ⊕ z



Parity Checker

 For even parity, the total 
number of “1” in the message 
is even

 An error occurs when the 
received number of “1” is odd

 An XOR gate (odd function) 
can detect such an error

 Has n+1 inputs
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