Lecture 3 :
Gate-Level Minimization

.

Outline

dfour-variable Karnaugh Map
JANAND and NOR Implementations
dOther Two-Level Implementations
QdEXxclusive-OR Function

Four-Variable Maps

\Z4
WX o0 01 11 10

01 My Ms m- Mg

11 |[Mg2 M3 M5 M4

10 |Mg Mg My Mo

= Top cells are adjacent to bottom cells. Left-
edge cells are adjacent to right-edge cells.

= Note variable ordering (WXYZ).

Example

= Simplify the following Boolean function
(ABCD)=>m(0,1245,7,8,9,10,12,13).

= First put the function g() into the map, and

then group as many 1s as possible.

cd
ab

1 1

1 1 1
1 1 1
1 1 1
1 1 1

1

g(A,B,C,D) = c+b'd+a’bd

&

EXAMPLE 3.5

Simplify the Boolean function
F(w, x,y,z)=2(0,1,2,4,5 6,8 9, 12, 13, 14)

'LI'." -}r
W 00 01 11 10
H’r_}*JEJ My iy [iy
s 1 1
e |m = T Wiy’
+ 7 g,
1] 1 1 1
L X
My My My My
- 1141 1 L —t— xyz’
'y —1 -
" g g My flyp
10 1 1
L/ -
v -

F=Yy +W2zZ +XZ’

! EXAMPLE 3.6

Simplify the Boolean function

F=A'B'C' + B'’CD'" + A'BCD" + ARB'C”

A'RC

C
INCD \ .
D 00 N0l 11 10

My M, My m; i ,
\'a 1 1 1 | T ABCD
g m, i, g,
m 1 AChr
Mz iy My iy, B
11
A
Mg g My il
10 P 1 l____ﬂ_ 1.

L — ™~ ApcD
AE’C'D’/ D \AH,C,
F=B'D’+B'C’+ACD’

Example

Simplify the function f(a,b,c,d)
whose K-map is shown at the right.

f = d'c'd+ab'+cd'+a’bc’

or

f = da'c’'d+ab'+cd'+a’bd’

The middle two terms are EPIs, while
the first and last terms are selected

to
cover the minterms m;, m,, and ms.

(There's a third solution!)

11
10

! EXAMPLE 3.7

Simplify the following Boolean function into (a) sum-of-
products form and (b) product-of-sums form:
F(A B, C, D) =200, 1,2,5 8,9, 10)

C
CD)
AR 00 01 11 10

ool 1 | 1 0 -1 K/EEB’

EC'ﬂ"“‘-—-__,_.__H My My My L /
0

o 1 0

11 0 0 0] 0O

A m]
3 g iy, My
wl 1 1 0 1 T~ 45

(by F=(A"+B)Y(C'+D")YE" +D)

Two Gate Implementations

d Sometimes product-of-sums representations
may have smaller implementations

6 literals, 4 gates

7 literals, 4 gates

HO— g
D—=D—+ b)
O— e

(a) F=B'D' + B'C' + A'C'D (b) F=(A"+ B)(C'+ D')(B' + D)

Chapter 3

15

-

d X = don't care (can be 0 or 1)

A Don't cares can be included to form a larger cube,
but not necessary to be completely covered

Q Ex: F(w, x,y, z) =2(1,3,7,11,15) d(w, x, y, z) =2(0,2,5)

Don’t Care Conditions

.kl

. ¥z —_—
i _ 11 ar:;][] WX 00 01 11 10
[T m, i, i,
1 1 X oo X | 1 1 X
X < [] my ; w'y — _m o = e
) i 0 X 1 0
X
JrII;[] m“] m-l[] l My s My *
11 0 0 1 i
My, [W iy m, iy my
0 IH 0 | o0 0 1 0
~J
. \\\ P \
| . ¥z
(a) F=yz + w'x (b) F= yz + w'z

Chapter 3 16

-~
NAND and NOR Implementation

d Digital circuits are frequently constructed with NAND or
NOR gates rather than with AND and OR gate

d NAND and NOR gates are much easier to fabricate
O NAND or NOR gates are both universal gates

d Any digital system can be implemented with only
NAND gates or NOR gates

Inverter x Ll\'/)o x' Inverter X Dbo '

Chapter 3 17

Alternative Graphic Symbols

d To facilitate the conversion to NAND or NOR logic, it is
convenient to define alternative graphic symbols

O “"Bubble” means complement

Do D e D
X — T
;:} {xyz)’ %%I"I}J"IE' (xyz)'

(a) AND-invert () Invert-OR

. 1-|—[>0—|_ g

s D > D=2 D=
¥ —a
L—0

(a) OR-invert (b} Invert-AND

i

Two-Level Implementation (NAND)

d It's easy to implement a Boolean function with
only NAND gates if converted from a sum of
products form

4 Ex: F = AB+CD = ((AB)'(CD)")’

A —
B —
& —
D —
A—
B —
=
=
n—

(b) (c)

19

EXAMPLE 3.9

Implement the following Boolean function with NAND gates:

F(X,y,2)=2(1,2,3,4,5,7)

Procedures: yz
1. Simplify the function in sum of 00

01

11

10

products
2. Draw NAND gates for the first

1

1

level

3. Draw a single AND-invert or

[u—

invert-OR in the second level

4. Add an inverter at the first
level for the term with a

single literal
x—
y' —}
x| —
F
y—

D>

F=xy'+x'y+z

)
D=

20

s

Two-Level Implementation (NOR)

d It's easy to implement a Boolean function with
only NOR gates if converted from a product of
sums form

d Ex: F=(A+B)(C+D)E

1. add two bubbles

at the ends

A

D=

C

D

3. convert to

2. complement E’ NOR gate
this input to add using
the third bubble DeMorgan'’s

(if required) theorem

21

Multilevel NAND Circuits

Implementing F=(AB*+A‘B) (C + D*)

O Procedures:

1. Convert all AND gates to
NAND gates with AND-
}F invert symbols

¢ 2. Convert all OR gates to

ﬂ':D hon NAND gates with invert-
AR OR symbols

i 3. Check all bubbles and

R insert an inverter for the

’ . —{»—+ bubble that are not

;:}) compensated by another

bubble

(b) NAND gates

22

.

Exclusive-OR (XOR) Function

@ XOR is often denoted by the symbol &

d Logic operation of XOR
AXpyY=XY + XY

d Equal to 1 if only x is equal to 1 or if only y is equal
to 1, but not when both are equal to 1

a It's complement, exclusive-NOR (XNOR), is often
denoted by the symbol ©®

O Logic operation
QX O Y=XY+ XY

d It is equal to 1 if both x and y are equal to 1 or if both
are equalto O

d Seldom used in general Boolean functions

a Particularly useful in arithmetic operations and error
detection and correction circuits

23

~

Exclusive-OR Implementations

x }
D

>
[>

xy

(a) Exclusive-OR with AND-OR-NOT gates

Bt

D
D=

(b} Exclusive-OR with NAND gates

Odd Function
d The multiple-variable XOR

A
operation is defined as an H:D—}}

odd function f
0 TRUE when no. of "1”in . -
inpUtS is odd {a) 3-nput odd function

Be B
A oo 0l 11 10

L 1 1

ey iy i g
Al 1 1

(a) Odd luncltion F = A©QHEDC

= = = = O 0 O Ol
= O O =, O = = Ol

= = OO~ = O Ol
= O =, O F~, O = Ol0)

.

Even Function

d The multiple-variable XNOR
operation is defined as an
even function

O TRUE when no. of "1” in inputs

IS even
A B
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 | 1

R O =[O =~ O = 9Ol

O HIO OO

(b) 3-input even function

BC B
00 01 11 10

C

(a) Even function
F=(ADBDC)

26

.

Parity Generation and Checking

O An extra parity bit is often added and checked
at the receiving end for error

d The circuit that generates the parity bit in the
transmitter is called a parity generator

d The circuit that checks the parity in the receiver is
called a parity checker

d Exclusive-OR functions are very useful to
construct such circuits

27

Parity Generator

O For even parity:

d The total number of “1”
(including P) is even

d The number of “1” at inputs
is odd

d Generated with an XOR
gate (odd function)

AP=x®y® z (for 3-bit
message)

A Similarly, odd parity can be

generated with an XNOR
gate

Table 3.3
Even-Parity-Generator Truth Table

Three-Bit Message

X

4

F 4

Parity Bit

P

0
0
0
0
1

[T T —

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
(0
(0
1

' !

{a) 3-bit even parity generator

P=x@yobz

28

&

Parity Checker Table 3.4
Even-Parity-Checker Truth Table
Four Bit{.'i Paritl'.ly E;;rnr
. Receive Chec
Q For even parity, the total T, . r .
number of "1” in the message ~—, , ., . "
. 0] 0 1 1
IS even o 0o 1 0 1
Q An error occurs when the R S !
received number of *"1”isodd | | ! | .
Q0 An XOR gate (odd function) oo 0 |
can detect such an error oo)
O Has n+1 inputs S S o
1 1 0 1 1
x 1 1 1 0 1
) >—c
) > C=xBySIHP

(b) 4-bit even parity checker

