
Lecture 3 :
Gate-Level Minimization

1

Outline

four-variable Karnaugh Map

NAND and NOR Implementations

Other Two-Level Implementations

Exclusive-OR Function

2

Four-Variable Maps

 Top cells are adjacent to bottom cells. Left-
edge cells are adjacent to right-edge cells.

 Note variable ordering (WXYZ).

m10m11m9m810

m14m15m13m1211

m6m7m5m401

m2m3m1m000

10110100WX

YZ

Example
 Simplify the following Boolean function

(A,B,C,D) = ∑m(0,1,2,4,5,7,8,9,10,12,13).

 First put the function g() into the map, and
then group as many 1s as possible.

cd
ab

111

11

111

111

g(A,B,C,D) = c’+b’d’+a’bd

111

11

111

111

Chapter 3 6

EXAMPLE 3.5
Simplify the Boolean function
F (w, x, y, z) =Σ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

F = y’ + w’z’ + xz’

Chapter 3 7

EXAMPLE 3.6
Simplify the Boolean function

F = B’D’ + B’C’ + A’CD’

Example

 Simplify the function f(a,b,c,d)
whose K-map is shown at the right.

 f = a’c’d+ab’+cd’+a’bc’

or

 f = a’c’d+ab’+cd’+a’bd’

 The middle two terms are EPIs, while
the first and last terms are selected
to
cover the minterms m1, m4, and m5.

 (There’s a third solution!)

xx11

xx00

1011

1010

xx11

xx00

1011

1010

0 1 0 1

1 1 0 1

0 0 x x

1 1 x x

ab
cd

00

01

11

10

00 01 11 10

EXAMPLE 3.7
Simplify the following Boolean function into (a) sum-of-
products form and (b) product-of-sums form:
F (A, B, C, D) =Σ(0, 1, 2, 5, 8, 9, 10)

Chapter 3 14

Two Gate Implementations

Chapter 3 15

 Sometimes product-of-sums representations
may have smaller implementations

Don’t Care Conditions

Chapter 3 16

 X = don’t care (can be 0 or 1)

 Don’t cares can be included to form a larger cube,
but not necessary to be completely covered

 Ex: F(w, x, y, z) =Σ(1,3,7,11,15) d(w, x, y, z) =Σ(0,2,5)

NAND and NOR Implementation

Chapter 3 17

 Digital circuits are frequently constructed with NAND or
NOR gates rather than with AND and OR gate

 NAND and NOR gates are much easier to fabricate

 NAND or NOR gates are both universal gates

 Any digital system can be implemented with only
NAND gates or NOR gates

Alternative Graphic Symbols

Chapter 3 18

 To facilitate the conversion to NAND or NOR logic, it is
convenient to define alternative graphic symbols

 “Bubble” means complement

Two-Level Implementation (NAND)

 It’s easy to implement a Boolean function with
only NAND gates if converted from a sum of
products form

 Ex: F = AB+CD = ((AB)‘(CD)‘)‘

19

EXAMPLE 3.9
Implement the following Boolean function with NAND gates:
F (x, y, z) = Σ(1, 2, 3, 4, 5, 7)

Procedures:

1. Simplify the function in sum of
products

2. Draw NAND gates for the first
level

3. Draw a single AND-invert or
invert-OR in the second level

4. Add an inverter at the first
level for the term with a
single literal

20

Two-Level Implementation (NOR)

 It’s easy to implement a Boolean function with
only NOR gates if converted from a product of
sums form

 Ex: F=(A+B)(C+D)E

21

Multilevel NAND Circuits

 Procedures:

1. Convert all AND gates to
NAND gates with AND-
invert symbols

2. Convert all OR gates to
NAND gates with invert-
OR symbols

3. Check all bubbles and
insert an inverter for the
bubble that are not
compensated by another
bubble

22

Implementing F = (AB‘ + A‘B) (C + D‘)

Exclusive-OR (XOR) Function

 XOR is often denoted by the symbol ⊕

 Logic operation of XOR

 X ⊕ Y = XY’ + X’Y

 Equal to 1 if only x is equal to 1 or if only y is equal
to 1, but not when both are equal to 1

 It’s complement, exclusive-NOR (XNOR), is often
denoted by the symbol ⊙

 Logic operation

 X ⊙ Y = XY + X’Y’

 It is equal to 1 if both x and y are equal to 1 or if both
are equal to 0

 Seldom used in general Boolean functions

 Particularly useful in arithmetic operations and error
detection and correction circuits

23

Exclusive-OR Implementations

24

Odd Function

 The multiple-variable XOR
operation is defined as an
odd function

 TRUE when no. of “1” in
inputs is odd

25

Even Function

 The multiple-variable XNOR
operation is defined as an
even function

 TRUE when no. of “1” in inputs
is even

26

Parity Generation and Checking

 An extra parity bit is often added and checked
at the receiving end for error

 The circuit that generates the parity bit in the
transmitter is called a parity generator

 The circuit that checks the parity in the receiver is
called a parity checker

 Exclusive-OR functions are very useful to
construct such circuits

27

Parity Generator

 For even parity:

 The total number of “1”
(including P) is even

 The number of “1” at inputs
is odd

 Generated with an XOR
gate (odd function)

 P = x ⊕ y ⊕ z (for 3-bit
message)

 Similarly, odd parity can be
generated with an XNOR
gate

28

P = x ⊕ y ⊕ z

Parity Checker

 For even parity, the total
number of “1” in the message
is even

 An error occurs when the
received number of “1” is odd

 An XOR gate (odd function)
can detect such an error

 Has n+1 inputs

29

